TruMicro Laser Portfolio

<table>
<thead>
<tr>
<th>TruMicro</th>
<th>2000</th>
<th>5000</th>
<th>7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse width</td>
<td>ps</td>
<td>ps to fs</td>
<td>ns</td>
</tr>
<tr>
<td>Max. Average power</td>
<td>IR: 20 W</td>
<td>IR: 150 W
Green: 90 W
UV: 30 W</td>
<td>IR: 850 W
Green: 300 W
UV: 180 W</td>
</tr>
<tr>
<td>Max. Pulse Energy</td>
<td>IR: 50 µJ</td>
<td>IR: 250 µJ
Green: 125 µJ
UV: 37.5 µJ</td>
<td>IR: 80 mJ
Green: 7.5 mJ
UV: 18 mJ</td>
</tr>
<tr>
<td>Beam delivery</td>
<td>Direct beam</td>
<td>Direct beam</td>
<td>Fiber coupled
UV: Direct beam</td>
</tr>
<tr>
<td>Typical application</td>
<td>Foil cutting, black marking, ablation</td>
<td>Precision drilling, cutting and ablation</td>
<td>High speed ablation, cutting and drilling</td>
</tr>
</tbody>
</table>
Cold Processing of WLCSP with ultrafast lasers

Michael Lang
Industry Management Microtechnology
Company figures

<table>
<thead>
<tr>
<th></th>
<th>Fiscal Year 2014/15</th>
<th>Change in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales (in mil. €)</td>
<td>2,717.0</td>
<td>+ 5.0</td>
</tr>
<tr>
<td>– Adjusted comparison*</td>
<td></td>
<td>+12.6</td>
</tr>
<tr>
<td>Income before taxes (in mil. €)</td>
<td>357.1</td>
<td>+ 43.8</td>
</tr>
<tr>
<td>Investments (in mil. €)</td>
<td>129.4</td>
<td>+ 3.7</td>
</tr>
<tr>
<td>Expenditure for R+D (in mil. €)</td>
<td>265.1</td>
<td>+ 8.9</td>
</tr>
<tr>
<td>Employees (as of 06/30/2015)</td>
<td>10,873</td>
<td>- 0.4</td>
</tr>
<tr>
<td>– Adjusted comparison*</td>
<td></td>
<td>+ 6.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Fiscal Year 2015/16**</th>
<th>Change in %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales (in bil. €)</td>
<td>2.8</td>
<td>+ 3.0</td>
</tr>
</tbody>
</table>

* Adjusted comparison that includes the effects due to the discontinuation of the Medical Technology business division

** Preliminary figures for the fiscal year 2015/16.
Worldwide presence – Business Field Laser Technology

Our locations close to our customers
Our business divisions

Share of sales in 2014/15

<table>
<thead>
<tr>
<th>Machine tools for flexible sheet metal processing</th>
<th>Laser technology / Electronics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sales 2014/15</td>
<td>2,360 mill. €</td>
</tr>
<tr>
<td>Share of sales</td>
<td>70.7 %</td>
</tr>
<tr>
<td>Sales 2014/15</td>
<td>966 mill. €</td>
</tr>
<tr>
<td>Share of sales</td>
<td>28.8 %</td>
</tr>
</tbody>
</table>
The Power of Choice

<table>
<thead>
<tr>
<th>CO$_2$-Laser</th>
<th>Disk Laser</th>
<th>Diode Laser</th>
</tr>
</thead>
<tbody>
<tr>
<td>TruFlow & TruCoax</td>
<td>TruDisk</td>
<td>TruDiode</td>
</tr>
</tbody>
</table>

- **CO$_2$-Laser**: TruFlow & TruCoax
- **Disk Laser**: TruDisk
- **Diode Laser**: TruDiode

- **Fiber Laser**: TruFiber
- **Pulsed YAG**: TruPulse
- **USP Laser**: TruMicro
- **Marking Laser**: TruMark

The Power of Choice
What our laser technology is typically used for…

...Industrial material processing

- Cutting
- Welding
- Cladding
- Ablating
- Marking
CE Products and their Components e.g: Tablet
COLD PROCESSING OF WLCSP WITH ULTRAFAST LASERS

TRUMPF in Semicon Industry
EUV requires fundamental innovations...

...in and around the lithography system

- Where is TRUMPF?
TRUMPF technology in EUV system

Upper level: cleanroom / chip manufacturing
Lower level: CO₂ laser pulse generation

TRUMPF FFA focusing optics

Scanner

EUV light generation

Final focusing assembly

Beam transport system

TRUMPF CO₂ laser system: Drive Laser and Seed module

Quelle: ASML/Cymer

Quelle: ASML
Drive Laser

Seed laser module and power amplifiers

- 50,000 CO₂ laser pulses per second
- 10.6 μm wavelength
- Several MW pulse peak power
- > 25 kW average power
- <1.4 beam quality factor M²
TRUMPF Lasersystems for Semiconductor Manufacturing GmbH

Founded November 01, 2014. 100% dedicated to EUV.
Ultrafast pulses as a tool
Ultrafast Pulses

Pico- \((10^{-12})\) or Femto \((10^{-15})\) Second pulse durations

Light travels 1.3 seconds between the moon and earth – in one femto second it only covers half a human hair.
Properties of Ultrafast pulses

Ultrafast pulses enable extreme power densities

Surface of the sun:
ca. 1 Mio. = 10^6 W/cm²

Ultrashort-Laser:
$>10^{16}$ W/cm²
Materials processing with ultrafast laser pulses

Cold ablation of a wide range of materials

ns Pulse

ps Pulse

Cold ablation on a match stick
Injection nozzle drilling – development

1999 Drilling with TRUMPF Vanadat short pulse laser (ns)

2000 R&D project Primus (ps-Laser)

2002 BoR: Laser for finest material processing
 (Cooperation partner: BOSCH)

2003 1. Concept laser (Quattro)

2004 R&D project Promptus

2006 Kickoff: TruMicro 5000 (Gen I)

2008 BoR: TruMicro 5000 (Gen II)
 B. Leibinger award for BOSCH: „Introduction of USP
 micro processing in industrial production”

2009 Release TruMicro 5000 (Gen II)

2011 TruMicro 5000 highpower (IR + green)

2013 German Future Price awarded to BOSCH, Fraunhofer
 IOF / University Jena, TRUMPF
THIN FILM ABLATION
Ablation of thin films

Thin Films
- Metals → Au, Ag, Cu, Mo, In
- Semiconductors → Si, CdTe, Cl(G)S, IGZO
- TCOs → ITO, ZnO, SnO₂
- Dielectrics → SiO₂, SiN

Substrate materials
- Glass
- Sapphire
- Metals
- Semiconductors
- Ceramics (Al₂O₃, AN)
- PET, PI, PC
Ablation of Dielectrics

Target:
- Single Spot Ablation of SiN, SiO₂
- Substrate Silicon
- No thermal influence on Si

Solution:
- TruMicro 5000
- Ultrashort pulses
- Scanner solution
- Focus diameter ~30 µm
- Low damage to substrate
- Speed > 5 m/s
Ablation of Metal Coatings

Target:
- Ablation of Molybdenum from Glass

Solution:
- TruMicro 5050
- 20 µm min. track width
- Low average power necessary
- Speed > 2 m/s
- Low damage to substrate
Ablation of Metal Coatings

- Ablation of various coatings (Ag, Au, Cu) from alumina ceramic and PET substrates

Solution:
- TruMicro 5250
- 20 µm min. track width
- Low average power necessary
- 100 mm/s
- Low damage to substrate
Ablation of Metal Coatings

Target:
- Silver layer ablation
- 20 µm lines
- Ag: 8 µm thick
- PET substrate: 120 µm

Laser:
- TruMicro 2020
- Up to 1600 mm/s
Ablation of Metal Coatings

Application:
- Copper ablation
- Cu: 25 µm
- PI: 75 µm

Laser:
- TruMicro 5250
CERAMICS
Drilling of Ceramics

Target:
- Cylindrical holes in AlN ceramics
- Thickness 0.5 mm
- 60 µm diameter
- 500µm thickness

Solution:
- TruMicro 5050 / 5070

Result:
- Almost straight walls
- > 20 holes / s
- No burr
Ceramics
Ceramic Engraving

Request:
- General test engraving of ceramic (Al$_2$O$_3$) with TruMicro 2020

Equipment:
- TruMicro 2020 (IR)
- Optics f = 100 mm
- Burstmode (1,2,…,8)

Result:
- Volume ablation rate up to 3 mm3/min; 100 µm depth
- No engraving possible without Burstmode; Taper ~25°; No burr
PI / ORGANICS / MIXED STACKS
Cutting of thin PI Film (cover layer)

Request:
• Cutting of a thin PI (Kapton) Foil on paper
• No burning

Solution:
• TruMicro 5250
• Multipass cutting

Result:
• Effective cutting speed: 140 mm/s
• No burning or bulging
Flexboards – Cutting of Polyimide film

Request:
- Cutting PI film
- Thickness 100 µm

Solution:
- TruMicro 5250
- Cutting speed up to 100 mm/s
- Low HAZ
Wearables

A MUCH More Diversified Market Than Investors Realize

Source: Company Website, iFlowreader, Credit Suisse Estimates,

Produced by: John Pitzer
Slide 6
SiP Singulation

Low Taper, high cut speed
No heat affected Zone (HAZ)
TRANSPARENT MATERIALS
Sapphire cutting
Flat Panel Displays: Cover glass and displays

Displays for mobile devices

- Cutting of chemically strengthened cover glass and display glass
- Picosecond lasers with special optics enable high speed cutting up to 1 m/s

⇒ Picosecond lasers
Selective laser etching

The modification of glass medium USP lasers enables targeted, selective etching of almost any geometry

Ø 200 micron holes

Ø 500 micron holes
COLD PROCESSING OF WLCSP WITH ULTRAFAST LASERS

www.trumpf.com
www.Laser-Community.com
YOUR CONTACT

Michael Lang
Industry Management Microtechnology
michael.lang@de.trumpf.com

Vicky Chen
Trumpf Taiwan
+886-3-270 8028
vicky.chen@tw.trumpf.com
TruMicro Laser Portfolio

<table>
<thead>
<tr>
<th>TruMicro</th>
<th>2000</th>
<th>5000</th>
<th>7000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pulse width</td>
<td>ps</td>
<td>ps to fs</td>
<td>ns</td>
</tr>
<tr>
<td>Max. Average power</td>
<td>IR: 20 W</td>
<td>IR: 150 W</td>
<td>IR: 850 W</td>
</tr>
<tr>
<td></td>
<td>Green: 90 W</td>
<td>Green: 300 W</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV: 30 W</td>
<td>UV: 180 W</td>
<td></td>
</tr>
<tr>
<td>Max. Pulse Energy</td>
<td>IR: 50 µJ</td>
<td>IR: 250 µJ</td>
<td>IR: 80 mJ</td>
</tr>
<tr>
<td></td>
<td>Green: 125 µJ</td>
<td>Green: 7.5 mJ</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UV: 37.5 µJ</td>
<td>UV: 18 mJ</td>
<td></td>
</tr>
<tr>
<td>Beam delivery</td>
<td>Direct beam</td>
<td>Direct beam</td>
<td>Fiber coupled UV: Direct beam</td>
</tr>
<tr>
<td>Typical application</td>
<td>Foil cutting, black marking, ablation</td>
<td>Precision drilling, cutting and ablation</td>
<td>High speed ablation, cutting and drilling</td>
</tr>
</tbody>
</table>